

SLT and Complex Problems

Ir. Academician Emeritus Professor Tan Sri Dato' Dr. HT Chuah Chairman Standing Committee on Engineering Education, FEIAP

Student Learning Time (SLT)

- Effective learning time or student effort in learning or the learning volume (a quantitative measurement of all learning activities) in order to achieve the specified learning outcomes
- Include all learning activities formal and non-formal
- Total time required by student to learn a particular component of curriculum: Official Contact Time + Guided Learning Time + Self Study Time (Independent learning) + Assessment Time
- Synonymous to student's academic load, e.g. credit hours

Student Learning Time (SLT)

Effective Learning Time or Student Academic Load (SAL) or Learning Volume can be in a variety of ways:

- About 8 hours/day
- 40-48 working hours/week
- 560-670 hours/14 week semester
- Normally 15 16 credits per semester
- 1 Credit Hour about 40 SLT (per semester)

Student Learning Time (SLT)

- Management instrument for both the directed, guided and independent learning,
- Component of time management SLT promotes ethics and discipline in student's effort towards learning
- Enhancing "life-long-learning" skills
- An indicator of effort in learning and study smart
- Educate on how the "learning by doing" in respect to effort in learning i.e. student-centred outcome-based approach
- Effective control of prescribed study duration

Guideline for Estimating SLT & CAL (Course Academic Load)

Teaching modality	Time (hr) per	Additional	Total time
	unit of	time to be	(hr) per unit
	teaching	added (hr)	of teaching
Lecture	1	1-2	2-3
Tutorial	1-2	1-2	2-4
Lab Practical	3	2-3	5-6
Small Group Discussion	1-2	1	2-3
Fixed Learning Module	3	0	3
Problem-based learning	2-3	2-3	4-6
Presentations	1	3-4	4-5
Each 2000 word written assignment	10-20	0	10-20
Case summary (per case)	3	0	3
Research Project (total)	240-400	0	240-400

Guideline for estimating SLT & CAL (Course Academic Load)

Teaching modality	Time (hr) per unit of teaching	Additional time to be added (hr)	Total time (hr) per unit of teaching
Industrial training (total)	320 (should be at least 2 months)	0	320
Demonstration per session	1-2	0	1-2
Electronic/Online learning per session	3-5	0	3-5
Clinical per session	Whatever time that has been allocated	0	Whatever time that has been allocated
Field work per session	Whatever time that has been allocated	0	Whatever time that has been allocated

Roles of Engineering Personnel

Engineer Graduate	Engineering Technologist Graduate	Engineering Technician Graduate
Apply knowledge of	Apply knowledge of	Apply knowledge of
mathematics,	mathematics,	mathematics,
science,	science, engineering	science, engineering
engineering	fundamentals	fundamentals
fundamentals and an	and an engineering	and an engineering
engineering	specialization	specialization
specialization	to defined and applied	to wide practical
respectively to the	engineering procedures,	procedures and
solution of	processes,	practices
complex engineering	systems or	
problems	methodologies	

Engineering and Engineering Technology

Spectrum of Technical Job Functions

bing.com/images – engineering spectrum

Engineering Solution for a Complex Problem

Engineering Solution

Education Outcomes: Engineering Solution

In Line with UN Sustainable Development Goals

- **Goal 1: No Poverty**
- **Goal 2: Zero Hunger**
- **Goal 3: Good Health and Well Being**
- **Goal 4: Quality Education**
- **Goal 5: Gender Equality**
- **Goal 6: Clean Water and Sanitation**
- **Goal 7: Affordable and Clean Energy**
- **Goal 8: Decent Work and Economic Growth**
- **Goal 9: Industry, Innovation and Infrastructure**
- via Best Practices in Engineering Profession/Projects, and Innovative Engineering Solutions

In Line with UN Sustainable Development Goals

- **Goal 10: Reduced Inequalities**
- **Goal 11: Sustainable Cities and Community**
- **Goal 12: Responsible Consumption and Production**
- **Goal 13: Climate Action**
- **Goal 14: Life Below Water**
- **Goal 15: Life on Land**
- **Goal 16: Peace, Justice and Strong Institutions**
- **Goal 17: Partnerships for the Goals**
- via Best Practices in Engineering Profession/Projects, and Innovative Engineering Solutions,
- **Mobility of Engineering Personnel for Development and Smart Partnership**

Complex Problem

Need to think broadly and systematically and see the big picture **Complex Problem Difficult Decision Uncertain** Strategy **Confusing** Idea **Contentious Product Intractable Change**

Difficulty & Uncertainty

- Complexity the problem contains a large number of diverse, dynamic and interdependent elements
- Measurement it is difficult or practically unfeasible to get good qualitative data
- Novelty there is a new solution evolving or an innovative design is needed

Characteristics of Problems

Technical Problems

- Isolatable boundable problem
- Universally similar type
- Stable and/or predictable problem parameters
- Multiple low-risk experiments are possible
- Limited set of alternative solutions
- Involve few or homogeneous stakeholders
- Single optimal and testable solutions
- Single optimal solution can be clearly recognised

Complex Problems

- No definitive problem boundary
- Relatively unique or unprecedented
- Unstable and/or unpredictable problem parameters
- Multiple experiments are not possible
- No bounded set of alternative solutions
- Multiple stakeholders with different views or interest
- No single optimal and/or objectively testable solution
- No clear stopping point

Complex Problem

Complex Engineering Problems

	<i>Complex Engineering Problems</i> have characteristic WP1 and some or all of WP2 to WP7:
Depth of Knowledge Required	WP1: Cannot be resolved without in-depth engineering knowledge at the level of one or more of WK3, WK4, WK5, WK6 or WK8 which allows a fundamentals-based , first principles analytical approach
Range of conflicting requirements	WP2: Involve wide-ranging or conflicting technical, engineering and other issues
Depth of analysis required	WP3: Have no obvious solution and require abstract thinking, originality in analysis to formulate suitable models
Familiarity of issues	WP4: Involve infrequently encountered issues
Extent of applicable codes	WP5: Are outside problems encompassed by standards and codes of practice for professional engineering

"Graduate Attributes and Professional Competencies" published by the International Engineering Alliance which are also adopted by FEIAP (https://www.ieagreements.org)

Complex Engineering Problems

	<i>Complex Engineering Problems</i> have characteristic WP1 and some or all of WP2 to WP7:
Extent of stakeholder involvement and conflicting requirements	WP6: Involve diverse groups of stakeholders with widely varying needs
Interdependence	WP 7: Are high level problems including many component parts or sub-problems
Consequences	EP1: Have significant consequences in a range of contexts
Judgement	EP2: Require judgement in decision making

	Attributes	Complex Activities
1	Preamble	Complex activities means (<i>engineering</i>) activities or projects that have some or all of the following characteristics:
2	Range of resources	EA1: Involve the use of diverse resources (and for this purpose resources includes people, money, equipment, materials, information and technologies)
3	Level of interactions	EA2: Require resolution of significant problems arising from interactions between wide-ranging or conflicting technical , engineering or other issues
4	Innovation	EA3: Involve creative use of engineering principles and research-based knowledge in novel ways
5	Consequences to society and the environment	EA4: Have significant consequences in a range of contexts, characterized by difficulty of prediction and mitigation
6	Familiarity	EA5: Can extend beyond previous experiences by applying principles-based approaches

"Graduate Attributes and Professional Competencies" published by the International Engineering Alliance which are also adopted by FEIAP (https://www.ieagreements.org)

Problem Oriented, Team-Based Project Work as a Learning/Teaching Device

- 1. Problem-oriented project-organized education deals with the solution of theoretical problems through the use of any relevant knowledge, whatever discipline the knowledge derives from. We are dealing with KNOW WHY (Research Problems)
- 2. In design-oriented project work, the students deal with **KNOW HOW** problems that can be solved by theories and knowledge they have acquired in their previous lectures (Design Problems)

Problem Organised Project Work or POPBL (Project Oriented Problem Based Learning)

How are Complexity and UN Sustainable Development Goals integrated into the curriculum?

- Final Year Project Real-life *Complex Problem Solving*
- Industrial Placement
- Design Project Real-life *Complex Engineering Activities*
- General Courses
 - Core & Specialist (Engineering) Courses
 - Elective Courses

with Open-ended Questions and Assignment, CEA

Lessons learnt from Accreditation Activities related to Assessment

- Does not know the Teaching Plan
- Done without Referring to the Plan
- Does not know How to Translate Plan into Assessment
- Assessing at Low-Medium level (not Challenging)
- No Feedback to Students except at the End of Semester
- Does not know How to Relate Assessment to Expected Outcomes
- Repetition
- Marking Issues delegated, peer marking, etc.
- Traditional Assessment

THANK YOU

FOR LISTENING